Numerical solution of an inverse problem of gravimetry for a contact surface
نویسندگان
چکیده
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولa numerical solution for an inverse heat conduction problem
in this paper, we demonstrate the existence and uniqueness a semianalytical solution of an inverse heat conduction problem (ihcp) in the form: ut = uxx in the domain d = {(x, t)| 0 < x < 1, 0 < t t}, u(x, t) = f(x), u(0, t) = g(t), and ux(0, t) = p(t), for any 0 t t. some numerical experiments are given in the final section.
متن کاملThe use of inverse quadratic radial basis functions for the solution of an inverse heat problem
In this paper, a numerical procedure for an inverse problem of simultaneously determining an unknown coefficient in a semilinear parabolic equation subject to the specification of the solution at an internal point along with the usual initial boundary conditions is considered. The method consists of expanding the required approximate solution as the elements of the inverse quadrati...
متن کاملNumerical Solution of an Inverse Diffusion Problem
In this paper, we propose an algorithm for numerical solving an inverse nonlinear diffusion problem. The algorithm is based on the linearized nonlinear terms by Taylor ́s series expansion, removed the time-dependent terms by Laplace transform, and so, the results at a specific time can be calculated without step-by-step computations in the time domain. Finite difference technique used for discre...
متن کاملInverse Gravimetry Problem
where A is some set of multiindices α. A first crucial question is whether there is enough data to (uniquely) find f . Let u0 be a function in the Sobolev space H(Ω) with zero Cauchy data u0 = ∂νu0 = 0 on Γ0 and let f0 = −∆u0. Due to linearity, −∆(u+ u0) = f + f0. Obviously, u and u+ u0 have the same Cauchy data on Γ0, so f and f+f0 produce the same data (2), but they are different in Ω. It is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Letters
سال: 2005
ISSN: 0893-9659
DOI: 10.1016/j.aml.2004.01.005